## Home work 5

Slip line net work in this problem (Fig. 1)can be drawn as shown in Fig. 2.
From Fig.3, at the point $A, s_{A}=-c_{u}$ (1)
At the point $B$, the direction of major principal stress is $\eta$ from the vertical and the angle between stress $\sigma_{3}$ and $\sigma_{a}$ is $\mu$, and $\mu=\eta$.
From the Mohr's stress circle at the point B (Fig.3),.

$$
\begin{equation*}
\text { and } s_{B}=\sigma_{a}+c_{u} \cos 2 \mu \tag{3}
\end{equation*}
$$

The rotation of the $\beta$ slip line from $A$ to $B$ is $\mu$.
The change of stress from $s_{A}$ to $s_{B}$ along the $\beta$ slip line $A B$ is given by Eq. (7.40).

$$
\begin{equation*}
\mathrm{s}_{\mathrm{B}}-\mathrm{s}_{\mathrm{A}}=-2 \mathrm{c}_{\mathrm{u}} \mu+\gamma \mathrm{z} \tag{4}
\end{equation*}
$$

Fig. 1



