Home work 5

Slip line net work in this problem (Fig. 1)can be drawn as shown in Fig.2.

From Fig.3, at the point A, $s_A = -c_u$ (1)

At the point B, the direction of major principal stress is η from the vertical and the angle between stress σ_3 and σ_a is μ , and μ = η .

From the Mohr's stress circle at the point B (Fig.3),.

and $s_B = \sigma_a + c_u \cos 2\mu$ (3)

The rotation of the β slip line from A to B is μ . The change of stress from s_A to s_B along the β slip line AB is given by Eq. (7.40).

$$s_B - s_A = -2c_u \mu + \gamma z$$
 (4)

